GPU Preconditioning for Block Linear Systems Using Block Incomplete Sparse Approximate Inverses
نویسندگان
چکیده
منابع مشابه
Sparse Approximate Inverses for Preconditioning of Linear Equations
1. Sparse Approximate Inverses and Linear Equations We consider the problem of solving a system of linear equations Ax = b in a parallel environment. Here, the n n-matrix A is large, sparse, unstructured, nonsymmetric, and ill-conditioned. The solution method should be robust, easy to parallelize, and applicable as a black box solver. Direct solution methods like the Gaussian Elimination are no...
متن کاملFinite-element based sparse approximate inverses for block-factorized preconditioners
In this work we analyse a method to construct a numerically efficient and computationally cheap sparse approximations of some of the matrix blocks arising in the block-factorised preconditioners for matrices with a two-by-two block structure. The matrices arise from finite element discretizations of partial differential equations. We consider scalar elliptic problems, however the approach is ap...
متن کاملBlock Approximate Inverse Preconditioners for Sparse Nonsymmetric Linear Systems
Abstract. In this paper block approximate inverse preconditioners to solve sparse nonsymmetric linear systems with iterative Krylov subspace methods are studied. The computation of the preconditioners involves consecutive updates of variable rank of an initial and nonsingular matrix A0 and the application of the Sherman-MorrisonWoodbury formula to compute an approximate inverse decomposition of...
متن کاملParallel Preconditioning with Sparse Approximate Inverses
A parallel preconditioner is presented for the solution of general sparse linear systems of equations. A sparse approximate inverse is computed explicitly and then applied as a preconditioner to an iterative method. The computation of the preconditioner is inherently parallel, and its application only requires a matrix-vector product. The sparsity pattern of the approximate inverse is not impos...
متن کاملModified Sparse Approximate Inverses (MSPAI) for Parallel Preconditioning
The solution of large sparse and ill-conditioned systems of linear equations is a central task in numerical linear algebra. Such systems arise from many applications like the discretization of partial differential equations or image restoration. Herefore, Gaussian elimination or other classical direct solvers can not be used since the dimension of the underlying coefficient matrices is too larg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2021
ISSN: 1563-5147,1024-123X
DOI: 10.1155/2021/5558508